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Abstract A new Multistage high algebraic order four-step method is obtained in this
paper. It is the first time in the literature that a method of this category is developed and
has vanishingof the phase-lag and its first, second, third, fourth andfifth derivatives.We
study this newmethod by investigating: (1) the development of the newmethod, i.e. the
calculation of the coefficients of the method in order the phase-lag and its first, second,
third, fourth and fifth derivatives of the phase-lag to be vanished, (2) the determination
of the formula of the Local Truncation Error, (3) the comparative analysis of the Local
Truncation Error (with this we mean the application of the new method and similar
methods on a test problemand the analysis of their behavior), (4) the stability of the new
method, by applying the new obtained method to a scalar test equation with frequency
different than the frequency of the scalar test equation for the phase-lag analysis and by
studying the results of this application i.e. by investigating the interval of periodicity
of the new obtained method. We finally study the computational behavior the new
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developed method by using the application of the new method to the approximate
solution of the resonance problem of the radial Schrödinger equation. We prove the
effectiveness of the newobtainedmethod by comparing itwith (1)well knownmethods
of the literature and (2) very recently obtained methods.

Keywords Schrödinger equation · Multistep methods · Multistage methods ·
Explicit methods · Interval of periodicity · P-stability · Phase-lag · Phase-fitted ·
Derivatives of the phase-lag

Mathematics Subject Classification 65L05

1 Introduction

A new multistage explicit four-step method of tenth algebraic order is studied in this
paper. For this category of methods, we have the following novelties:

– The explicitly type of this category of methods. Consequently, these methods can
be easily applied to any kind of problem (linear or non-linear)

– The new category of methods are of tenth algebraic order
– The new category of methods is based on an explicit four-step method with opti-
mum choice of parameters

– For the first time in the literature for these kind of methods, the new obtained
method has vanished the phase-lag and its first, second, third, fourth and fifth
derivatives

The new category of methods are for the numerical solution of problems which can
be written as:

q ′′(x) = f (x, q(x)). (1)

We study the special case of the above problems with periodical and/or oscillating
solutions.

Remark 1 These problems consist of a system of second order ordinary differential
equations (ODEs) in which the first derivative q ′ does not appear explicitly. There are
many problems of this kind in astronomy, astrophysics, quantum mechanics, quan-
tum chemistry, quantum physics, celestial mechanics, electronics, physical chemistry,
chemical physics etc (see for more details in [1–4]).

Remark 2 The aim and scope of our study is the construction of an efficient algorithm
for the abovementioned problems.With the term efficientwemean an algorithmwhich
is effective, fast and reliable for the numerical solution of these kind of problems. A
lot of research has been done on this subject (see for example [5–119]).

Themain classes of the finite differencemethods whichwas developed as a result of
the above described research are presented in Fig. 1. It is obvious that much research
is done on this subject.

The category of methods which will study in the paper has the following charac-
teristics:

123



J Math Chem (2015) 53:1915–1942 1917

Numerical Solution of the Initial or Boundary Value
Problems with Solutions of Periodical and/or Oscillating Behavior

Methods with coefficients Methods with
dependent on the Constant coefficients

frequency of the problem

Exponentially Trigonometrically Phase Fitted and/or Symplectic Other Finite
Fitted Methods Fitted Methods Amplification Fitted Methods Integrators Difference

(with or without Vanishing of the Methods*
Derivatives of the Phase Lag
and/or of the Amplification Error)

* for example methods with minimal Phase Lag and/or minimal Amplification Error and constant coefficients etc

Fig. 1 Categories of finite difference methods developed in the last decades

1. The methods of this category have three stages (multistage method).
2. The basic idea for the development of the special methods of this category is

the vanishing of the phase-lag and its derivatives. We will apply all the stages of
the new method to the scalar test equation in order to define the phase-lag and its
derivatives. It is the first time in the literature that for these kind of methods wewill
try to vanish the phase-lag and its first, second, third, fourth and fifth derivatives.

3. Our studywill investigate how the vanish of the phase-lag and its derivatives affects
the effectiveness of the new obtained method.

4. We will compare the finally developed methods with other well known methods
of the literature and also with recently developed method in order to study its
efficiency.

Remark 3 The area of application of the methods belonging to the category which
will be investigated in this paper is

– problems with periodic solution and/or,
– problems with oscillating solution,
– problems with solutions containing functions cos and sin,
– problems with solutions containing combination of the the functions cos and sin.

A description of the recent literature on the subject of the paper is presented in
Sect. 2. In Sect. 3, we present an analysis of the category of the methods which will be
studied in this paper. The phase-lag analysis together with the direct formula for the
computation of the phase-lag for the symmetric 2 k methods is presented in Sect. 4.
In Sect. 5, we present the construction of the new obtained explicit three stages four-
step method. An investigation of the local truncation error analysis (LTE) of the new
developed multistage method is presented in Sect. 6. In the same section, we will
compare the asymptotic behavior of the LTE of the new method with the asymptotic
behavior of the LTE of other methods when we apply them to a scalar test problem.
In Sect. 7, we investigate the stability (interval of periodicity) analysis of the new
method. Numerical results on the numerical solution of the resonance problem of the
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one dimensional time independent Schrödinger type are presented in Sect. 8. Finally,
in Sect. 9, we present some remarks and conclusions.

2 Recent literature on the subject of the paper

Some recent literature on the subject is given below:

– Phase-fitted methods and numerical methods with minimal phase-lag of Runge–
Kutta and Runge–Kutta Nyström type have been obtained in [5–14].

– In [15–20], exponentially and trigonometrically fitted Runge–Kutta and Runge–
Kutta Nyström methods are constructed.

– Multistep phase-fitted methods and multistep methods with minimal phase-lag are
obtained in [25–61].

– Symplectic integrators are investigated in [62–91].
– Exponentially and trigonometrically multistep methods have been produced in
[92–112].

– Nonlinear methods have been studied in [113] and [114]
– Review papers have been presented in [115–119]
– Special issues and Symposia in International Conferences have been developed
on this subject (see [120–123])

3 Analysis of the new three-stage four-step method

The analysis of new three-stage four-step method is presented in Fig. 2.
The aim and scope of the above mentioned analysis are:

– The computation of the coefficients a0, a j , j = 2(1)4 of the new three stage
method in order to achieve
1. the highest possible algebraic order,
2. the vanishing of the phase-lag,
3. the vanishing of the first derivative of the phase-lag,
4. the vanishing of the second derivative of the phase-lag,
5. the vanishing of the third derivative of the phase-lag,
6. the vanishing of the fourth derivative of the phase-lag,
7. the vanishing of the fifth derivative of the phase-lag,

– The investigation of the obtained local truncation error. We will also compare the
asymptotic behavior of the produced local truncation error of the new four-step
method with the asymptotic behavior of other methods of the same form in the
case of a scalar test problem.

– The investigation of the stability of the newmethod. The scalar test equation which
will be used for this study has frequency different than the frequency of the scalar
test equation used for the phase-lag analysis.

– The investigation of the effectiveness of the new four-step method using the reso-
nance problem of the one-dimensional time independent Schrödinger equation.

Remark 4 It is the first time in the literature that for this kind of methods we achieve
the vanishing of the phase-lag and its first, second, third, fourth and fifth derivatives.
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Analysis of the New Mul�stage
Explicit Four Step Method

1. Presenta�on of the first stage of the new
proposed 3 stage method. Free parameters:

2. Presenta�on of the second stage of the new 3
stage method: Free parameters: a

3. Presenta�on of the third stage of the new 3 stage
method: Free parameters: j

a a

a b j . We

note that a

4. Computa�on of the Phase Lag
5. Computa�on of the First, Second, Third, Fourth

and Fi�h Deriva�ves of the Phase Lag
6. Request of Elimina�on of the Phase Lag and its

First, Second, Third, Fourth and Fi�h Deriva�ves
of the Phase Lag for the New Method

Analysis of the Method
Computa�on of the Local Trunca�on
Error
Compara�ve Local Trunca�on Error
Analysis based on a test equa�on
Stability Analysis

1

Implementa�on of the Method

Applica�on of the Method
to the Radial Differen�al

Equa�ons arising from the
Schrödinger Equa�on

1

Fig. 2 Flowchart of the presentation of the analysis of the new obtained three-stage high algebraic order
method

Remark 5 The direct formula for any 2 k symmetric multistep method developed by
Simos and his coworkers in [28] and [31] is used for the calculation of the phase-lag
and its derivatives.

4 Phase-lag analysis of symmetric 2 k-step methods

Let us consider the multistep method with 2 k steps for the numerical solution of the
problem (1):

k∑

i=−k

ai qn+i = h2
k∑

i=−k

bi f (xn+i , qn+i ) (2)

where:

– 2m are the number of steps over the equally spaced intervals [x−i−1, xi+1], i =
0(1)m − 1, where {xi }m

i=−m ∈ [a, b]
– h = |xi+1 − xi |, i = 0(1)m − 1, where h is called stepsize of integration
– |a0| + |b0| �= 0
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Remark 6 The method (2) with bk �= 0 is called implicit and with bk = 0 is called
explicit.

Remark 7 The method (2) is called symmetric if

ai−k = ak−i , bi−k = bk−i , i = 0(1)k (3)

The application of a symmetric 2 k-step the method (2) to the scalar test equation

q ′′ = −w2 q, (4)

leads to the following difference equation

Ak(v) yn+k +· · ·+ A1(v) yn+1+ A0(v) yn + A1(v) yn−1+· · ·+ Ak(v) yn−k = 0, (5)

where v = w h, h is the step length and A0(v), A1(v), . . ., Ak(v) are polynomials of
v.

The difference equation (5) leads to the following associated characteristic equation:

Ak(v) λk + · · · + A1(v) λ + A0(v) + A1(v) λ−1 + · · · + Ak(v) λ−k = 0 (6)

Theorem 1 [28] and [31]The symmetric 2 k-step method with characteristic equation
given by (6) has phase-lag order m and phase-lag constant c given by:

−c vm+2 + O
(
vm+4

)
= 2 Ak (v) cos (k v)+ · · · +2 A j (v) cos ( j v)+ · · · + A0 (v)

2 k2 Ak (v)+ · · · +2 j2 A j (v)+ · · · +2 A1 (v)
(7)

Remark 8 For the category of methods investigated in this paper i.e. for a symmetric
four-step method - the number k = 2 and the direct formula for the computation of
the phase-lag is given by:

− c vm+2 + O(vm+4) = 2 A2(v) cos(2 v) + 2 A1(v) cos(v) + A0(v)

8 A2(v) + 2 A1(v)
(8)

where m is the phase-lag order and c is the phase-lag constant.

5 The new multistage explicit four-step method

Let us consider the family of symmetric three stage explicit four-step methods for the
numerical solution of problems of the form (1):

q̄n = qn − a3 h2
(

q ′′
n+1 − 2 q ′′

n + q ′′
n−1

)
− 2 a4 h2 q ′′

n

q̃n = qn − a2 h2
(

q ′′
n+1 − 2 q̄ ′′

n + q ′′
n−1

)
(9)

qn+2 + a1 qn+1 + a0 qn + a1 qn−1 + qn−2
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1. Considera�on of the following Three Stage Explicit Four Step Method:
with coefficient:

and free parameters to be determined

2. Applica�on of the above family of methods to the scalar test equa�on

3. Based on step 2, produc�on of the difference equa�on:

4. The difference equa�on of step 3 is associated the characteris�c equa�on:

5. Produc�on of the direct formula for the computa�on of the phase lag.

Therefore we have the equa�on:
6. Produc�on of the direct formula for the computa�on of the first deriva�ve of

phase lag. Therefore we have the equa�on:
7. Produc�on of the direct formula for the calcula�on of the second deriva�ve of

phase lag. Therefore we have the equa�on:

8. Produc�on of the direct formula for the calcula�on of the third deriva�ve of
phase lag. Therefore we have the equa�on:

9. Produc�on of the direct formula for the calcula�on of the fourth deriva�ve of
phase lag. Therefore we have the equa�on:

10. Produc�on of the direct formula for the calcula�on of the fi�h deriva�ve
of phase lag. Therefore we have the equa�on:

11. Solu�on of the system of equa�ons produced using the steps 5 10. The
result is the determina�on of the free parameters of the method. For the cases
of small values of (which give cancella�ons of the produced coefficients),
Taylor series expansions of the obtained coefficients are developed.

Construc n of the Three Stage
Explicit Four Step Method

q q a h q q q a h q
q q a h q
n n n n n n

n n n n n

n n n n n

n n n

q q
q a q q a q q
h b q q b q

1

a

jia i b j

q w q

j n j n j nA v q q A v q

1

2

i i
jA v A v

P

f g

hase Lag

Derivative o the Phase La

Second Derivative of the
Phase Lag

2

3

Third Derivative of the
Phase Lag

Fourth Derivative of the
Phase Lag

Fifth Derivative of the

Phase Lag

3

4

v

4

Fig. 3 Flowchart of the construction of any method of the family

= h2
[

b1
(
q ′′

n+1 + q ′′
n−1

) + b0 q̃ ′′
n

]
, (10)

where

a1 = − 1

10
(11)

and the coefficients ai , i = 0, 2(1)4 and b j , j = 0, 1 are free parameters, h is the
step size of the integration, n is the number of steps, qn is the approximation of the
solution on the point xn , xn = x0 + n h and x0 is the initial point of integration.

In Fig. 3, we present the flowchart for the development of the new three stages
symmetric four-step method.

Based on the flowchart of Fig. 3, application of the new proposed method (10)
to the scalar test equation (4) leads to the difference equation (5) with k = 2 and
A j (v) , j = 0, 1, 2 given by:

A2 (v) = 1, A1 (v) = − 1

10
+ v2

(
b1 + b0 a2 v2

(
−2 a3 v2 + 1

))
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A0 (v) = a0 + v2 b0
(
1 + a2 v2

(
4 a3 v2 − 4 a4 v2 − 2

))
(12)

Requesting vanishing of the phase-lag and its first, second, third, fourth and fifth
derivatives and using the formulae (8) and (12), we obtain the following system of
equations:

Phase-lag = − T0
Tdenom1

= 0 (13)

First derivative of the phase-lag = T1
T 2

denom

= 0 (14)

Second derivative of the phase-lag = T2
T 3

denom

= 0 (15)

Third derivative of the phase-lag = T3
T 4

denom

= 0 (16)

Fourth derivative of the phase-lag = T4
T 5

denom

= 0 (17)

Fifth derivative of the phase-lag = T5
T 6

denom

= 0 (18)

where Tj , j = 0(1)5, Tdenom1 and Tdenom are given in Supplement Material A.
Solving the above system of equations (13)–(18) we obtain the coefficients of the

new three stage symmetric explicit four-step method:

a4 = −1

6

T6
T7

, a3 = 1

2

T8
T7

, a2 = −1

2

T9
T10

a0 = − 1

15

T11
T12

, b1 = 1

10

T13
v2 T12

, b0 = 1

5

T14
v2 T12

(19)

where Ti , i = 6(1)14 are given in Supplement Material B.
In order to avoid cancellations for small values of |w|, the following Taylor series

expansions should be used:

a4 = 109

4072
− 353395 v2

22799128
+ 200277123529 v4

61273112482560
− 30009157545747761 v6

56194564082177993472

+ 192143116327781754674417 v8

2567408252656295017269780480
− 7868696339603276051975318221 v10

819370371977487960696529551728640

+ 8914116188035758968734369016592529 v12

7533411949278999940448626924000739328000

− 25121809273709926121027044209858669323 v14

177154208716855106799601821019416585889382400

+ 9997745733274262365756008356595043029473195627 v16

598041382246246349561963871280565371465682213928960000

− 1171975643646934111107427727334405319947180860744911 v18

600709005635893956028819967324799461361642036012411518976000
+ · · ·
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a3 = 799

24432
− 3988315 v2

957563376
+ 1509609104713 v4

2573470724267520
− 59202693865264847 v6

842918461232669902080

+ 915470137536836110771889 v8

107831146611564390725330780160

− 433288859307677339166489363047 v10

430169445288181179365678014657536000

+ 704005291507768233786976900155542947 v12

6011662735524641952478004285352589983744000

− 481170345388861228234913699102260397381 v14

35342264639012593806520563293373608884931788800

+ 388762015980494018095343075974799854126993902673 v16

247589132249945988718653042710154063786792436566589440000
172250337773872490113477013659420760607457920652781 v18

954067244245243341928125830457034438633196174843241824256000
+ · · ·

a2 = − 509

10500
− 439 v2

161700
+ 1142177 v4

2716560000
− 1719589 v6

444972528000
+ 549495505483 v8

349481423491200000

− 9728550433298707 v10

17430385996623600000000
− 8312639070239291 v12

585660969486552960000000

+ 3829577952958885716143 v14

505637718768334079928000000000

− 33312617237114794508711 v16

54366167521971280273858560000000

+ 4675187425885382368186753 v18

57084475898069844287551488000000000
+ · · ·

a0 = −9

5
+ 439 v12

186278400
− 175933 v14

782369280000
+ 802609 v16

85434725376000

− 103982671867 v18

201301299930931200000
+ · · ·

b1 = 53

40
− 439 v8

12418560
+ 110009 v10

43464960000
− 3074651 v12

37970989056000

+ 21712832027 v14

3727801850572800000
− 14959758133 v16

72116021254717440000

+ 101577877872907 v18

16867035921212725248000000
+ · · ·

b0 = 5

4
+ 439 v8

6209280
− 139103 v10

7244160000
+ 78077647 v12

56956483584000
− 80230299949 v14

1397925693964800000

+ 865900562837 v16

274595619392962560000
− 3851702611693273 v18

33734071842425450496000000

+ 6219373210461308269 v20

1491186309174069401797263360000
+ · · · (20)

In Fig. 4 the behavior of the coefficients a0, b j , j = 0, 2(1)4 is presented.
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Fig. 4 Behavior of the coefficients of the new obtained three stages method given by (19) for several values
of v = w h
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Remark 9 The new developed three stages method is the the symmetric four-step
method (10) with the coefficients given by (19)–(20).

The local truncation error of this new obtained three stages symmetric explicit
four-step method (mentioned as MuSMeth10) is given by:

LTEMuSMeth10 = 439 h12

186278400

(
q(12)

n + 6w2 q(10)
n + 15w4 q(8)

n + 20w6 q(6)
n

+ 15w8 q(4)
n + 6w10 q(2)

n + w12 qn

)
+ O

(
h14

)
(21)

where q( j)
n is the j th derivative of qn .

6 Comparative error analysis

The following methods will be investigated:

6.1 Classical predictor–corrector explicit four-Step method, i.e., the method
(10) with constant coefficients

LTECL = 439 h12

186278400
q(12)

n + O
(

h14
)

(22)

6.2 The three stages explicit symmetric four-step method with vanished
phase-lag and its first, second, third, fourth and fifth derivatives developed
in Sect. 5

LTEMuSMeth10 = 439 h12

186278400

(
q(12)

n + 6w2 q(10)
n + 15w4 q(8)

n + 20w6 q(6)
n

f + 15w8 q(4)
n + 6w10 q(2)

n + w12 qn

)
+ O

(
h14

)
(23)

The study of the Local Truncation Error Analysis is based on the flowchart presented
in the Fig. 5.

Based on the scalar test equation (which is mentioned in the flowchart) which is
used for the comparative local truncation error analysis, we calculate the derivatives
q j

n , j = 2, 3, . . .. These formulae of the derivatives are given by:

q(2)
n = (V (x) − Vc + G) q(x)

q(3)
n =

(
d

dx
g (x)

)
q (x) + (g (x) + G)

d

dx
q (x)

q(4)
n =

(
d2

dx2
g (x)

)
q (x) + 2

(
d

dx
g (x)

)
d

dx
q (x)
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Comparative Local Error Analysis of
the Three Stage Explicit Symmetric

Four Step Method for the
Approximate Solution of the

Schrödinger Equation
We consider the scalar test problem:

q x f x q x

f x g x G

cg x V x V g

cV G E

1

Computation of the derivatives
iq x i

c

iv

q x V x V G q x

q x g x q x g x G q x

q x g x q x g x q x
g x G q x

Substitution of the derivatives of the function

q x , which has been calculated in the previous

step of the flowchart, to the expression of the
Local Truncation Error (LTE):

MuSMeth n n

n n n n

n

hLTE q w q

w q w q w q w q

w q O h

1

2

As a result of the previous step in the
flowchart a new expression of the Local

Truncation Error LTE formula is

developed

Calculation of the
Local Truncation Error

LTE as function of G

2

Fig. 5 Flowchart for the calculations on the comparative local truncation error analysis

+ (g (x) + G)2 q (x)

q(5)
n =

(
d3

dx3
g (x)

)
q (x) + 3

(
d2

dx2
g (x)

)
d

dx
q (x)

+ 4 (g (x) + G) q (x)
d

dx
g (x) + (g (x) + G)2

d

dx
q (x)

q(6)
n =

(
d4

dx4
g (x)

)
q (x) + 4

(
d3

dx3
g (x)

)
d

dx
q (x)

+7 (g (x) + G) q (x)
d2

dx2
g (x) + 4

(
d

dx
g (x)

)2

q (x)

+ 6 (g (x) + G)

(
d

dx
q (x)

)
d

dx
g (x) + (g (x) + G)3 q (x)

q(7)
n =

(
d5

dx5
g (x)

)
q (x) + 5

(
d4

dx4
g (x)

)
d

dx
q (x)
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+ 11 (g (x) + G) q (x)
d3

dx3
g (x) + 15

(
d

dx
g (x)

)
q (x)

d2

dx2
g (x)

+ 13 (g (x) + G)

(
d

dx
q (x)

)
d2

dx2
g (x) + 10

(
d

dx
g (x)

)2 d

dx
q (x)

+ 9 (g (x) + G)2 q (x)
d

dx
g (x) + (g (x) + G)3

d

dx
q (x)

q(8)
n =

(
d6

dx6
g (x)

)
q (x) + 6

(
d5

dx5
g (x)

)
d

dx
q (x)

+ 16 (g (x) + G) q (x)
d4

dx4
g (x) + 26

(
d

dx
g (x)

)
q (x)

d3

dx3
g (x)

+ 24 (g (x) + G)

(
d

dx
q (x)

)
d3

dx3
g (x) + 15

(
d2

dx2
g (x)

)2

q (x)

+ 48

(
d

dx
g (x)

) (
d

dx
q (x)

)
d2

dx2
g (x) + 22 (g (x) + G)2 q (x)

d2

dx2
g (x)

+ 28 (g (x) + G) q (x)

(
d

dx
g (x)

)2

+ 12 (g (x) + G)2
(

d

dx
q (x)

)
d

dx
g (x) + (g (x) + G)4 q (x)

. . .

Using the new formulae of the derivatives q j
n , j = 2, 3, . . ., we produce the new

formulae of the Local Truncation Error.
We study two cases (based on the value of E):

1. The Energy (E) is closed to the potential, i.e., G = Vc − E ≈ 0. Therefore, all the
non zero powers of G (i.e. G j , j �= 0) are equal to zero and consequently all the
terms of the formulae of the Local Truncation Error which include G j , j �= 0 are
approximately equal to zero (since G ≈ 0). Therefore, in this case the formulae
of the Local Truncation Error consist only from the free of G terms.

Remark 10 Multistep methods belonging in the same class of methods with different
coefficients have the same free of G terms in the formulae of the Local Truncation
Error

Therefore, for this case (energy (E) close to the potential) and based on the above
investigation, the formulae of the Local Truncation Error for both methods (i.e. clas-
sical methods (methods with constant coefficients) and methods with vanished the
phase-lag and its derivatives) are the same. Consequently, the error for these two kind
ofmethods: (1) classicalmethods (methodswith constant coefficients) and (2)methods
with vanished the phase-lag and its derivatives, will be approximately the same.

2. The Energy (E) is much bigger or smaller than the potential i.e. for the quantity
G we have G >> 0 or G << 0. Then |G| is a big number. Consequently, the
formulae of the Local Truncation Error are not the same for the numerical methods
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of the same family [(1) classical methods (methods with constant coefficients) and
(2) methods with vanished the phase-lag and its derivatives].

The asymptotic expressions of the Local Truncation Errors (based on the flowchart
and study presented above) are given by:

6.3 Classical method

LTECL = h12
(

439 q (x)

186278400

)
G6 + · · · + O

(
h14

)
(24)

6.4 The three stages explicit symmetric four-step method with vanished
phase-lag and its first, second, third, fourth and fifth derivatives developed
in Sect. 5

LTEMuSMeth10 = 439 h12

11642400

(
15

(
d

dx
g (x)

)
q (x)

d3

dx3
g (x)

+ 6 g (x) q (x)
d4

dx4
g (x) + 5

(
d6

dx6
g (x)

)
q (x)

+ 2

(
d5

dx5
g (x)

)
d

dx
q (x)

+ 10

(
d2

dx2
g (x)

)2

q (x)

)
G2 + · · · + O

(
h14

)
(25)

We have the following theorem:

Theorem 2 – For the Classical Three Stage Explicit Symmetric Four-Step Method
the error increases as the sixth power of G.

– For the Three Stages Explicit Symmetric Four-Step Method with Vanished Phase-
Lag and its First, Second, Third, Fourth and Fifth Derivatives developed in Sect. 5,
the error increases as the second power of G.

So, for the numerical solution of the Schrödinger equation the New Three Stages
Explicit Symmetric Four-Step Method with Vanished Phase-Lag and its First, Second,
Third, Fourth and Fifth Derivatives developed in Sect. 5 is the most efficient, from
theoretical point of view, especially for large values of |G| = |Vc − E |.

7 Stability analysis

The flowchart given in Fig. 6 is the basis of the interval of periodicity analysis for the
new three stage explicit symmetric four-step method (10) with the coefficients (11)
and (19).

Application of the above mentioned method to the scalar test equation:

q ′′ = −z2 q (26)
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Symmetric Four Step Finite
Difference Methods and their
Stability Analysis (Interval of

Periodicity Analysis)

We apply a symmetric four step method to the
scalar test equa�on
q z q ,z w

The above applica�on leads to a Difference
Equa�on given by:

i
i n i n i nA s v q q A s v q

s zh v wh

A Characteris�c Equa�on which is associated
with the above obtained Difference Equa�on is

given by:

i i
i

i
A s v A s v

1

The necessary and sufficient condi�ons for non
zero interval of periodicity (see for details the

theory developed by Lambert and Watson [21])
are presented. Based on these condi�ons, we

produce the requirements in order the Symmetric
Four Step Method to have non zero interval of

periodicity. These requirements give us the s v
plane for the new proposed method

Remark: The stability analysis is based on the fact
that the frequency of the scalar test equa�on for
the interval of periodicity analysis z is different

than the that the frequency of the scalar test
equa�on for the phase lag analysis w, i.e. z w

1

Fig. 6 Flowchart for the stability analysis of the new low cost hybrid explicit four-step method

leads to the difference equation:

A2 (s, v) (qn+2 + qn−2) + A1 (s, v) (qn+1 + qn−1) + A0 (s, v) qn = 0 (27)

where

A2 (s, v) = 1, A1 (s, v) = − 1

10

T15
T16

, A0 (s, v) = − 1

15

T17
T16

(28)

where s = z h and Tj , j = 15(1)17 are given in Supplement Material C.

Remark 11 It is noted that the frequency of the scalar test equation (26) used for the
stability analysis, z is not equal to the frequency of the scalar test equation (4) used
for the phase-lag analysis, w, i.e. w �= z.

The difference equation (27) is associated with a characteristic equation which is
given by:

A2 (s, v)
(
λ4 + 1

)
+ A1 (s, v)

(
λ3 + λ

)
+ A0 (s, v) λ2 = 0 (29)

Definition 1 (see [21]) A symmetric 2m-step method with the characteristic equation
given by (29) is said to have an interval of periodicity

(
0, v20

)
if, for all s ∈ (

0, s20
)
,

the roots λi , i = 1(1)4 satisfy

λ1,2 = e±i ζ(s), |λi | ≤ 1, i = 3, 4, . . . (30)

where ζ(s) is a real function of z h and s = z h.
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Fig. 7 s–v plane of the new three stage explicit symmetric four-step (10) with the coefficients given by
(11) and (19)

Definition 2 (see [21]) If for a method its interval of periodicity is equal to (0,∞),
then this method is called P-stable.

Definition 3 Amethod is called singularly almost P-stable if its interval of periodicity
is equal to (0,∞) − S.1

Remark 12 The properties of P-stability and singularly almost P-stability are existed
for the case for which the frequency of the scalar test equation (4) for the phase-lag
analysis,w, is equal with the frequency of the scalar test equation (26) for the stability
analysis z, i.e. only for the case w = z.

The s–v plane of the new three stage explicit symmetric four-step method is given
in Fig. 7.

Remark 13 The shadowed area of the the s–v region indicates the stable area, while
the white area indicates the unstable area.

Remark 14 In order to study the s–v regionwedivide the problems into two categories:

– Problems for which the frequency of the scalar test equation for the stability analy-
sis is not equal to the frequency of the scalar test equation for the phase-lag analysis
(i.e. z �= w)

1 Where S is a set of distinct points.
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– Problems for which the frequency of the scalar test equation for the stability analy-
sis is equal to the frequency of the scalar test equation for the phase-lag analysis
(i.e. z = w)

We note that the Schrödinger equation and its related problems belong into the
second category of problems described above.

1. For the first category of problems and in order to define the stability of a proposed
method we have to develop and investigate the s–v plane (for our obtained new
three stage explicit symmetric four-step method the s–v plane is shown in Fig. 7).

2. For the second category of problems it is sufficient to observe the surroundings of
the first diagonal of the s–v plane.

The study of the second category of problems, i.e. the study of the case z = w or
s = v i.e. the study of the surroundings of the first diagonal of the s–v plane, leads to
the result that for the new three stage explicit symmetric four-step method developed
in Sect. 5 the interval of periodicity is equal to: (0, 9.9).

The analysis presented above leads to the following theorem:

Theorem 3 The method produced in Sect. 5:

– is of multistage (three stage) type method,
– is of tenth algebraic order,
– has the phase-lag equal to zero,
– has phase-lag’s first, second, third, fourth and fifth derivatives equal to zero,
– has an interval of periodicity equals to: (0, 9.9) in the case where z = w or s = v.

8 Numerical results

The study of the efficiency of the new obtained method, will be done examining the
approximate solution of the radial time-independent Schrödinger equation.

The one-dimensional time-independent Schrödinger equation can be written as:

q ′′(r) = [l(l + 1)/r2 + V (r) − k2] q(r), (31)

where:

– The function P(r) = l(l + 1)/r2 + V (r) is called the effective potential. For the
effective potential, we have the following relation: P(r) → 0 as r → ∞.

– k2 is a real number which denotes the energy,
– l is defined by user integer which denotes the angular momentum,
– V is defined by user function denotes the potential.

Since we have a boundary boundary value problem it is necessary to define the
boundary conditions. the initial condition is given by the definition of the problem:

y(0) = 0 (32)

while the end condition (second boundary condition), for large values of r , is deter-
mined by the model of the problem.
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Fig. 8 The Woods–Saxon potential

Our new developed three stage explicit symmetric four-step method belongs to the
frequency dependent methods and therefore it is necessary the definition of the value
of the parameter w (frequency) in order the method to be applied for the approximate
solution of the radial Schrödinger equation. From the model of the radial Schrödinger
equation given by (31), the necessary to be defined parameter w is given by (for the
case l = 0):

w =
√

|V (r) − k2| = √|V (r) − E | (33)

where V (r) is the potential and E is the energy.

8.1 Woods–Saxon potential

In order to solve the time-independent one-dimensional Schrödinger equation (31) the
model of the the potential is necessary. This function is defined by the user. For our
numerical experiments we use the known Woods–Saxon potential which is given by

V (r) = u0

1 + y
− u0 y

a (1 + y)2
(34)

with y = exp
[

r−X0
a

]
, u0 = −50, a = 0.6, and X0 = 7.0.

in Fig. 8 we present the scheme of the Woods–Saxon potential.
Based on the analysis presented in [118] we define the frequency w using the

values of the potential on some critical points. Investigating some specific potentials
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it is possible some critical points to be defined. The methodology of determination
of the of the frequency w based on critical points of the potential, is one of several
methodologies for the definition of the frequency w (see [28] and references therein).

Remark 15 The abovementionedmethodology can be applied to some potentials. One
of the type of the potential in which we can apply this methodology is the Woods–
Saxon potential.

For our numerical experiments we use the following values of w based on the
specific critical points (see for details [1] and [92]):

w =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

√−50 + E, for r ∈ [0, 6.5 − 2h],√−37.5 + E, for r = 6.5 − h√−25 + E, for r = 6.5√−12.5 + E, for r = 6.5 + h√
E, for r ∈ [6.5 + 2h, 15]

(35)

For example, in the point of the integration area r = 6.5−h, the value ofw is given
by:

√−37.5 + E . So, v = w h = √−37.5 + E h. In the point of the integration area
r = 6.5 − 3 h, the value of w is given by:

√−50 + E , etc.

8.2 The radial Schrödinger equation and the resonance problem

The problem which we will solve for our numerical experiments is the numerical
solution of the radial time independent Schrödinger equation (31) using the men-
tioned aboveWoods–Saxon potential (34). Since this problem belongs to the boundary
value problems with infinite interval of integration, it is necessary for its approxi-
mate solution the infinite integration interval to be approximated by a finite one. For
our numerical tests we approximate the infinite interval of integration by the finite
interval of integration r ∈ [0, 15] and we will use a large domain of energies, i.e.,
E ∈ [1, 1000].
Remark 16 The potential decays faster than the term l(l+1)

r2
in the case of positive

energies, E = k2.

Using the above remark, the Schrödinger equation reduces to:

q ′′ (r) +
(

k2 − l(l + 1)

r2

)
q (r) = 0 (36)

for r greater than some value R.
The above equation has linearly independent solutions kr jl (kr) and krnl (kr),

where jl (kr) and nl (kr) are the spherical Bessel andNeumann functions respectively.
Consequently, the solution of Eq. (31) (when r → ∞), has the asymptotic form

q (r) ≈ Akr jl (kr) − Bkrnl (kr)
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≈ AC

[
sin

(
kr − lπ

2

)
+ tan dl cos

(
kr − lπ

2

)]
(37)

where δl is the phase shift that may be calculated from the formula

tan δl = y (r2) S (r1) − y (r1) S (r2)

y (r1) C (r1) − y (r2) C (r2)
(38)

for r1 and r2 distinct points in the asymptotic region (we choose r1 as the right hand
end point of the interval of integration and r2 = r1 − h) with S (r) = kr jl (kr) and
C (r) = −krnl (kr). For the initial-value problems (in our numerical experiments the
radial Schrödinger equation is treated as an initial-value problem) we need q j , j =
0(1)3 in order a four-step method to be started. The initial condition defines the first
value of q i.e. q0. Using high order Runge–Kutta–Nyström methods(see [124] and
[125]) we determine the values qi , i = 1(1)3. Now we have all the necessary initial
values and we can compute at r2 of the asymptotic region the phase shift δl .

The known as resonance problem is being solved for positive energies. This specific
problem consists either

– of finding the phase-shift δl or
– of finding those E , for E ∈ [1, 1000], at which δl = π

2 .

We solved the latter problem, known as the resonance problem.
The boundary conditions for this problem are:

q(0) = 0, y(r) = cos
(√

Er
)
for large r. (39)

We calculate the positive eigenenergies in the case of the Woods–Saxon potential
resonance problem using:

– The eighth order multi-step method developed by Quinlan and Tremaine [22],
which is indicated as Method QT8.

– The tenth ordermulti-stepmethod developed byQuinlan andTremaine [22], which
is indicated as Method QT10.

– The twelfth order multi-step method developed by Quinlan and Tremaine [22],
which is indicated as Method QT12.

– The fourth algebraic order method of Chawla and Rao with minimal phase-lag
[27], which is indicated as Method MCR4

– The exponentially-fitted method of Raptis and Allison [93], which is indicated as
Method RA

– The hybrid sixth algebraic order method developed by Chawla and Rao with min-
imal phase-lag [26], which is indicated asMethod MCR6

– The classical form of the fourth algebraic order four-step method developed in
Sect. 4, which is indicated as Method NMCL.2

– The Phase-FittedMethod (Case 1) developed in [48],which is indicated asMethod
NMPF1

2 With the term classical we mean the method of Sect. 4 with constant coefficients.
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CPU �me (in seconds)
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Fig. 9 Accuracy (digits) for several values ofC PU time (in seconds) for the eigenvalue E2 = 341.495874.
The nonexistence of a value of accuracy (digits) indicates that for this value of CPU, accuracy (digits) is
less than 0

– The Phase-FittedMethod (Case 2) developed in [48],which is indicated asMethod
NMPF2

– The Method developed in [52] (Case 2), which is indicated asMethod NMC2
– The Method developed in [52] (Case 1), which is indicated asMethod NMC1
– The Method developed in [45], which is indicated asMethod RKTPLDDEA
– The Method developed in [58], which is indicated asMethod HYBPLDDDEA
– TheHybrid LowComputational Computational Cost Four-StepMethod developed
in [46], which is indicated as Method HYMETH8

– The New Obtained Three Stages Explicit Symmetric Four-Step Method which is
developed in Sect. 5, which is indicated as Method MuSMeth10

The reference values of the eigenenergies which are computed, computed using
the well known two-step method of Chawla and Rao [26] with small step size for
the integration, are compared with those computed via the above mentioned methods.
In Figs. 9 and 10, we present the maximum absolute error Errmax = |log10 (Err) |
where

Err = |Ecalculated − Eaccurate| (40)

of the eigenenergies E2 = 341.495874 and E3 = 989.701916 respectively, for several
values of CPU time (in seconds). We note that the CPU time (in seconds) counts the
computational cost for each method.
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Fig. 10 Accuracy (digits) for several values ofC PU time (in seconds) for the eigenvalue E3 = 989.701916.
The nonexistence of a value of accuracy (digits) indicates that for this value of CPU, accuracy (digits) is
less than 0

9 Conclusions

A new three stage tenth algebraic order symmetric explicit four-step method was
studied in this paper.More specifically, we developed an explicit methodwith vanished
phase-lag and its first, second, third, fourth and fifth derivatives. We studied the new
proposed method as one block. We also investigated the effection of the vanishing
procedure on the computational effectiveness of the obtained method.

We theoretically studied the the comparative local truncation error analysis and the
stability analysis.

The numerical solution of the resonance problem of the radial time independent
Schrödinger equation given us the numerical experiments based on which we studied
the computational efficiency of the obtained method.

Remark 17 The new developed method is very efficient on any problem with oscillat-
ing and/or periodical solutions or problems with solutions contain the functions cos
and sin or any combination of them.

From the numerical results presented above, we can make the following remarks:

1. The classical form of the sixth algebraic order four-step method developed in
Sect. 4, which is indicated as Method NMCL is more efficient than the fourth
algebraic order method of Chawla and Rao with minimal phase-lag [27], which
is indicated as Method MCR4. Both the above mentioned methods are more
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efficient than the exponentially-fitted method of Raptis and Allison [93], which is
indicated asMethod RA. The method Method NMCL is more efficient than the
eighth algebraic order multistep method developed by Quinlan and Tremaine [22],
which is indicated asMethod QT8, the Phase-Fitted Method (Case 1) developed
in [48], which is indicated asMethod NMPF1 and the Phase-FittedMethod (Case
2) developed in [48], which is indicated as Method NMPF1.

2. The tenth algebraic order multistep method developed by Quinlan and Tremaine
[22],which is indicated asMethodQT10 ismore efficient than the fourth algebraic
order method of Chawla and Rao with minimal phase-lag [27], which is indicated
asMethodMCR4. TheMethod QT10 is also more efficient than the eighth order
multi-step method developed by Quinlan and Tremaine [22], which is indicated
as Method QT8. Finally, the Method QT10 is more efficient than the classical
form of the sixth algebraic order four-step method developed in Sect. 4, which is
indicated as Method NMCL.

3. The twelfth algebraic order multistep method developed by Quinlan and Tremaine
[22], which is indicated as Method QT12 is more efficient than the tenth order
multistep method developed by Quinlan and Tremaine [22], which is indicated as
Method QT10

4. The Method developed in [52] (Case 1), which is indicated as Method NMC1
is more efficient than the twelfth algebraic order multistep method developed by
Quinlan and Tremaine [22], which is indicated as Method QT12

5. The Method developed in [45], which is indicated as Method RKTPLDDEA is
more efficient than the method developed in [52] (Case 1), which is indicated as
Method NMC1.

6. The Method developed in [58], which is indicated as Method HYBPLDDDEA
is more efficient than method developed in [45], which is indicated as Method
RKTPLDDEA.

7. The low computational cost hybrid explicit four-step method of eight algebraic
order with vanished phase-lag and its first, second, third and fourth derivatives
developed in [46], which is indicated as Method HYMETH8, is more efficient
than the Method developed in [58], which is indicated as Method HYBPLD-
DDEA.

8. Finally, the New Obtained Three Stages Explicit Symmetric Four-Step Method
which is developed in Sect. 5, which is indicated as Method MuSMeth10, is the
most efficient one.

All computations were carried out on a IBMPC-AT compatible 80486 using double
precision arithmetic with 16 significant digits accuracy (IEEE standard).
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